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The number of homomorphisms hom(G, Kk) from a graph G to the complete
graph Kk is the value of the chromatic polynomial of G at a positive integer k.
This motivates the following (cf. [3]):

Definition 1 A sequence of graphs (Hk), k = (k1, . . . , kh) ∈ N
h, is strongly

polynomial if for every graph G there is a polynomial p(G; x1, . . . , xh) such that

hom(G, Hk) = p(G; k1, . . . , kh) for every k ∈ N
h.

Many important graph polynomials p(G) are determined by strongly polynomial
sequences of graphs (Hk): e.g. [2] the Tutte polynomial, Averbouch–Godlin–
Makowsky polynomial [1] (includes the matching polynomial) and Tittmann–
Averbouch–Godlin polynomial [4] (includes the independence polynomial).
We give a new construction of strongly polynomial sequences based on coloured
rooted tree encodings of graphs (such as cotrees for cographs), which among other
things offers a natural generalization of the above polynomials.
In this talk we illustrate this method with the following. We start with a simple
graph H given as a spanning subgraph of the closure of a rooted tree T . For each
k = (ks : s∈ V (T )) ∈ N

|V (T )| we use the tree T to recursively construct a graph
T k(H), in which, for each s ∈ V (T ), we create ks isomorphic copies of the subtree
Ts of T rooted at s, all pendant from the same vertex as Ts, while propagating
adjacencies of H in the closure of T to these copies of Ts.

Theorem 1 The sequence (T k(H)) is strongly polynomial.

Define β(H) to be the minimum value of |V (T )| such that H is a subgraph of
the closure of T k(T ). For example, β(K1,ℓ) = 2, β(P2ℓ) = 2ℓ, β(P2ℓ−1) = ℓ, and
β(Kℓ) = ℓ. We have tree-depth td(H) ≤ β(H) and β(H) = |V (H)| if H has no
involutive automorphisms.

Theorem 2 Let H be a family of simple graphs such that {β(H) : H ∈ H}
is bounded. Then H can be partitioned into a finite number of subsequences of

strongly polynomial sequences of graphs.
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