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The structure of cycles in multipartite tournaments has been extensively studied.
A survey on this topic [5] appeared in 2007 with several interesting open prob-
lems. For instance, the study of cycles whose length does not exceed the number
of partite sets leads to various extensions and gereralizations of classic results on
tournaments. Bondy [1] proved that each strongly connected c-partite tourna-
ment contains an m-cycle for each m ∈ {3, . . . , c}. In 1994, Guo and Volkmann
[4] proved that every partite set of a strongly connected c-partite tournament T
has at least one vertex that lies on a cycle of length m for each m ∈ {3, . . . , c}.
There are examples showing that not every vertex of a strongly connected c-
partite tournament is contained in a cycle of length m for each m ∈ {3, . . . , c}
in general [5]. However, Zhou et al. [6] proved that every vertex of a regular
c-partite tournaments with at least four parts is contained in a cycle of length m
for each m ∈ {3, . . . , c}. Volkmann [5] provided an example that shows that this
is not valid for regular 3-partite tournaments in general.

Let T be a 3-partite regular tournament. We say that a vertex v is
−→
C3-free if

v does not lie on any directed triangle of T . Let F3(T ) be the set of the
−→
C3-free

vertices in a 3-partite tournament. In 2010 Figueroa et al [2] proved that if T is
a regular 3-partite tournament, there is at most one partite set of T containing the
vertices in F3(T ) and a bound of |F3(T )| was given. In 2012 Figueroa and Olsen
[3] proved that |F3(T )| ≤ ⌊V (T )/12⌋ and generalized the Volkmann’s family to
show the tightness of this bound.

This talk is about the cardinality of F3(T ) in almost regular 3-partite tournaments
and results concerning this problem in 4-partite almost regular tournaments.
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