Upper chromatic number of hypergraphs: approximability results

Csilla Bujtás
(joint work with Zsolt Tuza)

We study a hypergraph coloring invariant which was first introduced by Berge in the early 1970’s and later independently in different contexts by further authors. A hypergraph \(H = (X, \mathcal{E}) \) is a set system \(\mathcal{E} \) on the underlying vertex set \(X \). An assignment \(\varphi : X \to \mathbb{N} \) is a \(C \)-coloring of \(H \) if each edge \(E \in \mathcal{E} \) has two vertices assigned to the same number (i.e. color). Equivalently, a \(C \)-coloring is a partition of the underlying set \(X \) where no edge \(E \in \mathcal{E} \) is completely sliced by the partition. The upper chromatic number \(\chi(H) \) of \(H \) is the possible maximum number of partition classes which can be achieved under this condition. We use the notation \(n = |X| \) and \(m = |\mathcal{E}| \) for the number of vertices and edges, respectively, in a generic input hypergraph \(H = (X, \mathcal{E}) \).

• For the general case we prove a guaranteed approximation ratio for the difference \(n - \chi(H) \).

A hypertree is a hypergraph \(H = (X, \mathcal{E}) \) for which a ‘host tree’ graph \(T = (X, F) \) exists with the property that each edge of \(H \) induces a connected subgraph in \(T \). We prove the following results on hypertrees:

• \(\chi(H) \) does not have an \(O(n^{1-\epsilon}) \)-approximation in polynomial time (unless \(P = NP \)).
• \(\chi(H) \) cannot be approximated within additive error \(\omega(n) \) in polynomial time, even if each edge of \(H \) contains at most 7 vertices (unless \(P = NP \)).

Our positive result is an algorithm proving the following claim:

• The problems of determining \(\chi(H) \) and finding a \(\chi(H) \)-coloring are fixed-parameter tractable in terms of maximum degree on the class of hypertrees.