Nowhere-zero flows on signed regular graphs

Eckhard Steffen

(joint work with Michael Schubert)

A signed graph (G, σ) is a graph G together with a function $\sigma : E(G) \to \{\pm 1\}$, which is called a signature of G. The set $N_{\sigma} = \{e : \sigma(e) = -1\}$ is the set of negative edges of (G, σ) and $E(G) - N_{\sigma}$ the set of positive edges. We study flows on signed graphs, and $F_c((G, \sigma))$ $(F((G, \sigma)))$ denotes the circular (integer) flow number of (G, σ) .

Bouchet [1] conjectured that $F((G, \sigma)) \leq 6$ for every flow-admissible signed graph. This conjecture is equivalent to its restriction on cubic graphs. We prove this conjecture for flow-admissible cubic graphs that have three 1-factors such that any two of them induce a hamiltonian circuit of G. In particular, every flow-admissible uniquely 3-edge-colorable cubic graph has a nowhere-zero 6-flow.

For a graph G and $X \subseteq E(G)$ let $\Sigma_X(G)$ be the set of signatures σ of G, for which (G, σ) is flow-admissible and $N_{\sigma} \subseteq X$. Define $\mathcal{S}_X(G) = \{r : \text{there is a signature} \sigma \in \Sigma_X(G) \text{ such that } F_c((G, \sigma)) = r\}$ to be the X-flow spectrum of G. The E(G)-flow spectrum is the flow spectrum of G and it is denoted by $\mathcal{S}(G)$. If we restrict our studies on integer-valued flows, then $\overline{\mathcal{S}}_X(G)$ denotes the integer X-flow spectrum of G.

We study the integer flow spectrum of signed cubic graphs G. There are cubic graphs whose integer flow spectrum does not contain 5 or 6. But we show, that $\{3,4\} \subseteq \overline{\mathcal{S}}(G)$, for every bridgeless cubic graph $G \neq K_2^3$, where K_2^3 is the unique cubic graphs on two vertices. We construct an infinite family of bridgeless cubic graphs with integer flow spectrum $\{3,4,6\}$.

We further study the flow spectrum of (2t+1)-regular graphs $(t \ge 1)$. In [2] it is proven that a (2t+1)-regular graph G is bipartite if and only if $F_c((G, \emptyset)) = 2 + \frac{1}{t}$. Furthermore, if G is not bipartite, then $F_c((G, \emptyset)) \ge 2 + \frac{2}{2t-1}$. We extend this kind of result to signed (2t+1)-regular graphs. Let $r \ge 2$ be a real number and G be a graph. A set $X \subseteq E(G)$ is r-minimal if

- (1) there is a signature σ of G such that $F_c((G, \sigma)) = r$ and $N_{\sigma} = X$, and
- (2) $F_c((G, \sigma')) \neq r$ for every signature σ' of G with $N_{\sigma'} \subset X$.

We show for (2t + 1)-regular graphs G, which have a t-factor: A set $X \subseteq E(G)$ is $(2 + \frac{1}{t})$ -minimal if and only if X is a minimal set such that G - X is bipartite.

Furthermore, if $X \subseteq E(G)$ is a $(2+\frac{1}{t})$ -minimal set and $r \in \mathcal{S}_X(G)$, then $r = 2+\frac{1}{t}$ or $r \geq 2+\frac{2}{2t-1}$.

References

- A. Bouchet, Nowhere-zero integral flows on bidirected graph, J. Comb. Theory Ser. B 34 (1983), 279–292.
- [2] E. Steffen, Circular flow numbers of regular multigraphs, J. Graph Theory 36 (2001), 24–34.