Covering with ordered enclosing for a multiconnected graph

Tatyana Panyukova

Let's consider S as a plane; G = (V, E) as a plane graph. Let f_0 be the exterior face of G. For any subset $H \subset S$ define Int(H) as subset of S, which is union of all the connected components of set $S \setminus H$ not containing exterior facet f_0 .

We say that minimal cardinality sequence of edge disjoint trails

$$C^{0} = v^{0} e_{1}^{0} v_{1}^{0} e_{2}^{0} \dots e_{k_{0}}^{0} v_{k_{0}}^{0}, \quad C^{1} = v^{1} e_{1}^{1} v_{1}^{1} e_{2}^{1} \dots e_{k_{1}}^{1} v_{k_{1}}^{1}, \quad \dots,$$

$$C^{n-1} = v^{n-1} e_{1}^{n-1} v_{1}^{n-1} e_{2}^{n-1} \dots e_{k_{n-1}}^{n-1} v_{k_{n-1}}^{n-1}$$

with ordered enclosing such that

$$(\forall m: m < n) \quad \left(\bigcup_{l=0}^{m-1} \operatorname{Int}(C^l)\right) \cap \left(\bigcup_{l=m}^{n-1} C^l\right) = \emptyset$$

is Eulerian cover with ordered enclosing for plane graph G = (V, E).

Let's present the algorithm for constructing such a trail for a multiconnected graph. This algorithm applies the concept of nesting value as in earlier papers (for example, in [1]).

Algorithm OptimalMultiComponent

Input: plane graph G.

Output: C_j^s , $j = 1, ..., |V_{odd}|/2$, covering of graph G by trails with ordered enclosing, s = 1, 2, ... the number of connected component.

Step 1. Define a set X of all connected components for graph G and $\forall x \in X$ define their nesting value K(x).

Step 2. Construct a full abstract graph \Im , its vertices be the connected components X of graph G, and edge lengths (weights) are equal to a distance between the nearest vertices of these components.

Step 3. Find minimal spanning tree $T(\Im)$ for \Im .

Step 4. Add all edges of this spanning tree to graph $G: G_{\mathfrak{F}} = G \cup T(\mathfrak{F})$.

Step 5. Run algorithm **OptimalCover** [1] for graph $G_{\mathfrak{S}}$.

As for the main idea of algorithm OptimalCover it constructs a covering of a plane graph G by trails with ordered enclosing using the shortest matching of a full graph $K_{|OddV(G)|}$ (its vertices are the vertices of odd degree $OddV(G) \in G$). The additional edges between the trails of a covering are taken as the edges of the shortest matching on $K_{|OddV(G)|}$.

Algorithm OptimalMultiComponent allows to construct covering by polynomial time $O(|V|^3)$.

References

 T. Panyukova, E. Savitskiy, Optimization of resources usage for technological support of cutting processes, Proc. CSIT 2010, 66–70.