Two-edge connected reliability of complete and complete bipartite graphs

Manja Reinwardt
(joint work with Peter Tittmann)

Reliability measures of networks have been considered by many authors. In this talk, results of the two-edge connected reliability as defined in [1] will be presented. Let $G = (V, E)$ be an undirected graph with vertex set V and edge set E. The edges $e \in E$ are assumed to fail independently with known probabilities $q_e = 1 - p_e$. The two-edge connected reliability of G is the probability for the realization of a two-edge connected graph.

We present a new approach for the computation of this reliability measure of complete and complete bipartite graphs. In the case of complete graphs a recursion is derived using set partitions. With this, one can also compute the number of two-edge connected simple graphs of given order. Furthermore, for complete bipartite graphs of the form $K_{s,t}$ with $s \leq 4$ and $t \geq s$ a direct formula is given using combinatorial arguments.

References