Signed homomorphisms of planar signed graphs to signed projective cubes

Edita Rollová

(joint work with Reza Naserasr and Eric Sopena)

A signed graph (G, Σ) is a graph G together with an assignment of signs + and - to all the edges of G where Σ is the set of negative edges. Furthermore (G, Σ_1) and (G, Σ_2) are considered to be equivalent if the symmetric difference of Σ_1 and Σ_2 is an edge cut of G [1].

Given two signed graphs (G, Σ_1) and (H, Σ_2) , we say that there is a signed homomorphism of (G, Σ_1) to (H, Σ_2) if there is a signed graph (G, Σ'_1) equivalent to (G, Σ_1) and a signed graph (H, Σ'_2) equivalent to (H, Σ_2) together with a mapping $\phi : V(G) \to V(H)$ such that every edge of (G, Σ'_1) is mapped to an edge of (H, Σ'_2) of the same sign.

In the talk we will investigate signed homomorphisms of planar signed bipartite graphs to signed projective cubes. The projective cube of dimension d, denoted $\mathcal{P}C_d$, is the Cayley graph $(\mathbb{Z}_2^d, \{e_1, e_2, \ldots, e_d\} \cup \{J\})$ where e_i is the vector of \mathbb{Z}_2^d with the *i*-th coordinate being 1 and other coordinates being 0 and J = $(1, 1, 1, \ldots, 1)$. Let \mathcal{J} be the set of edges corresponding to J. Then the signed projective cube of dimension d is the signed graph $(\mathcal{PC}_d, \mathcal{J})$.

We conjecture [2] that if G is a planar bipartite graph and Σ is a signature such that the shortest unbalanced cycle (i.e. a cycle with odd number of negative edges) of (G, Σ) is of length at least 2g, then (G, Σ) admits a homomorphism to the signed projective cube of dimension 2g-1. We will show that this conjecture is equivalent to the corresponding case of a conjecture of Seymour [3] stating that every planar 2g-regular multigraph with no odd edge-cut of less than 2g edges is 2g-edge-colorable.

References

- [1] R. Naserasr, E. Rollová, É. Sopena, Homomorphisms of signed graphs, preprint.
- [2] R. Naserasr, E. Rollová, É. Sopena, Homomorphisms of planar signed graphs to signed projective cubes, preprint.
- [3] P. Seymour, Matroids, hypergraphs and the Max.-Flow Min.-Cut Theorem, D. Phil. thesis, University of Oxford, 1975, p. 34.