Identifying coloring of a graph

Li-Da Tong

(joint work with Ting-Pang Chang)

Let G be a graph, u be a vertex of G, and $B(u)$ (or $B_G(u)$) be the set of u with all its neighbors in G. A set S of vertices is called an identifying set of G if there exists a function f from $V(G)$ to the set of all nonempty subsets of S such that (i) for each vertex u of G, $f(u) \subseteq B(u)$, and (ii) for every pair of distinct vertices u and v, $f(u)$ and $f(v)$ are distinct. f is called an identifying coloring of G with respect to S. The identifying chromatic number $\iota_c(G)$ is the cardinality of a minimum identifying set of G. In this paper, we study the identifying sets in graphs, give a polynomial-time algorithm to find a minimum identifying set of a tree, and determine the identifying chromatic numbers of complete bipartite graphs.

References