On some Zarankiewicz numbers and bipartite Ramsey numbers for quadrilateral

Tomasz Dzido
(joint work with Janusz Dybizbański and Stanisław Radziszowski)

The Zarankiewicz number \(z(m,n; s,t) \) is the maximum number of edges in a subgraph of \(K_{m,n} \) that does not contain \(K_{s,t} \) as a subgraph. The bipartite Ramsey number \(b(n_1, \ldots, n_k) \) is the least positive integer \(b \) such that any coloring of the edges of \(K_{b,b} \) with \(k \) colors will result in a monochromatic copy of \(K_{n_i,n_i} \) in the \(i \)-th color, for some \(i, 1 \leq i \leq k \). If \(n_i = m \) for all \(i \), then we denote this number by \(b_k(m) \).

In this talk we obtain the exact values of some Zarankiewicz numbers for quadrilateral \((s=t=2) \), and we derive new bounds for diagonal multicolor bipartite Ramsey numbers avoiding quadrilateral. In particular, we prove that \(b_4(2) = 19 \), and establish new general lower and upper bounds on \(b_k(2) \).

References